Amount of Substance (MCQ)

1. 0.24 g of an element, \mathbf{X}, is reacted with $0.0100 \mathrm{~mol} \mathrm{Cl}{ }_{2}$ to form a chloride with the formula $\mathbf{X C l}{ }_{2}$. What is element \mathbf{X} ?

A carbon
B magnesium
C molybdenum
D titanium
\square
2. Which chemical process is the most sustainable in terms of the atom economy of the organic product?

A $\mathrm{CO}_{2}+3 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaBr}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$

Your answer

3. $8.0 \mathrm{dm}^{3}$ of NO is mixed with $6.0 \mathrm{dm}^{3}$ of O_{2} at room temperature and pressure (RTP). The reaction below takes place until one of the reactants is used up.
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
What is the volume of the mixture at RTP after the reaction has taken place?

A $8.0 \mathrm{dm}^{3}$
B $10.0 \mathrm{dm}^{3}$
C $12.0 \mathrm{dm}^{3}$
D $\quad 14.0 \mathrm{dm}^{3}$

Your answer \square
4. What is the volume of 0.0100 mol of N_{2} at $350^{\circ} \mathrm{C}$ and 200 kPa ?

A $\quad 145 \mathrm{~cm}^{3}$
B $\quad 259 \mathrm{~cm}^{3}$
C $145 \mathrm{dm}^{3}$
D $259 \mathrm{dm}^{3}$

5. What is the percentage composition by mass of nitrogen in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$?

A 14.58%
B 17.95%
C $\quad 29.17 \%$
D 37.50%

Your answer \square
6. 1 mol of a compound reacts with $8 \mathrm{~mol} \mathrm{O}_{2}$ for complete combustion.

What is the formula of the compound?
A $\mathrm{C}_{4} \mathrm{H}_{8}$
B $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$
C $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$
D $\quad \mathrm{C}_{5} \mathrm{H}_{12}$

Your answer

7. What is the number of oxygen atoms in 88.0 g of CO_{2} ?

A 3.01×10^{23}
B 1.20×10^{24}
C $\quad 2.41 \times 10^{24}$
D $\quad 4.82 \times 10^{24}$
8. A compound has the composition by mass:

H, 5.00\%; N, 35.00\%; O, 60.00%.
Which compound has this composition?

A HNO_{3}
B $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
C HNO_{2}
D $\mathrm{NH}_{2} \mathrm{OH}$

Your answer
9. Sodium reacts with water as shown below.

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which mass of sodium reacts with water to produce $960 \mathrm{~cm}^{3}$ of hydrogen gas at RTP?

A $\quad 0.46 \mathrm{~g}$
B $\quad 0.92 \mathrm{~g}$
C $\quad 1.84 \mathrm{~g}$
D $\quad 3.68 \mathrm{~g}$

Your answer
[1]
10. Samples of four hydrocarbons are completely burnt under the same conditions of temperature and pressure.

Which sample produces the greatest volume of CO_{2} ?
A $\quad 0.4 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}$
B $\quad 0.3 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
C $\quad 0.2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}$
D $\quad 0.1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12}$

Your answer
11. Which reaction produces the smallest atom economy of BaCl_{2} ?

A $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B $\mathrm{BaO}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{BaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
D $\mathrm{Ba}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{H}_{2}$
12. An organic compound has the composition by mass:

C, 53.33 \%; H, 11.11\%; O, 35.56\%.
What is the empirical formula of the organic compound?
A $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
B $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
C $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
D $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
13. Calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, decomposes when heated, as shown below.

$$
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

A student decomposes 0.00500 mol of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and collects the gas that is produced.
Calculate the volume of gas that the student should expect to collect, measured at room temperature and pressure.

A $\quad 60 \mathrm{~cm}^{3}$
B $\quad 120 \mathrm{~cm}^{3}$
C $\quad 240 \mathrm{~cm}^{3}$
D $\quad 300 \mathrm{~cm}^{3}$

Your answer \square
14. A chemist collects $1.00 \times 10^{-6} \mathrm{~m}^{3}$ of a gaseous compound at 295 K and $1.01 \times 10^{5} \mathrm{~Pa}$.

What is the correct expression for the amount, in mol, of the gaseous compound
A $\frac{8.314 \times 295}{\left(1.01 \times 10^{5}\right) \times\left(1.00 \times 10^{-6}\right)}$

B $\frac{\left(1.00 \times 10^{-6}\right) \times 295}{8.314 \times\left(1.01 \times 10^{5}\right)}$

C $\frac{8.314 \times\left(1.00 \times 10^{-6}\right)}{\left(1.01 \times 10^{5}\right) \times 295}$

D $\frac{\left(1.01 \times 10^{5}\right) \times\left(1.00 \times 10^{-6}\right)}{8.314 \times 295}$

Your answer \square
15. 0.010 mol of barium is added to $500 \mathrm{~cm}^{3}$ of water. The equation is shown below:

$$
\mathrm{Ba}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The volume of water does not change during the reaction.
Which statement is correct?
A. The number of hydroxide ions formed is $0.010 \times 6.02 \times 10^{23}$.
B. The volume of hydrogen gas produced is $0.24 \mathrm{~cm}^{3}$, measured at room temperature and pressure.
C. The concentration of $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$ formed is $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$.
D. $\quad 0.0050 \mathrm{~mol}$ of water reacts.

Your answer \square
16. Which volume of oxygen gas, at room temperature and pressure, is required for complete combustion of $1.25 \times 10^{-3} \mathrm{~mol}$ of propan-1-ol?
A. $105 \mathrm{~cm}^{3}$
B. $120 \mathrm{~cm}^{3}$
C. $135 \mathrm{~cm}^{3}$
D. $120 \mathrm{~cm}^{3}$

Your answer \square
17. Which reagent would exactly neutralise $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$?
A. $\quad 0.100 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}$
B. $\quad 0.100 \mathrm{~mol} \mathrm{NH}_{3}$
C. $0.100 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$
D. 0.100 mol NaOH

Your answer \square
18. A student mixes $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}(\mathrm{aq})$ with $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$.

What is the total concentration of Na^{+}ions in the mixture formed?
A. $\quad 0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $\quad 0.200 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $0.300 \mathrm{~mol} \mathrm{dm}^{-3}$
D. $\quad 0.400 \mathrm{~mol} \mathrm{dm}^{-3}$

Your answer
19. Which mass of substance contains the greatest number of atoms?
A. 3.00 g of ammonia, NH_{3}
B. 3.00 g of chloromethane, CHCl_{3}
C. 4.00 g of hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$
D. 4.00 g of hydrogen chloride, HCl

Your answer \square
20. A sample of a compound \mathbf{M} contains 1.46 g of carbon, 0.482 g of hydrogen and 1.69 g of nitrogen.

What is the empirical formula of \mathbf{M} ?
A. $\mathrm{CH}_{2} \mathrm{~N}$
B. $\mathrm{C}_{4} \mathrm{HN}_{4}$
C. $\mathrm{CH}_{4} \mathrm{~N}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$

Your answer \square

Mark scheme - Amount of Substance (MCQ)

2.1.3 Amount of Substance MCQ

			Total	1	
6			D		Examiner's Comments Most candidates selected A or D, with D being the correct option. Presumably, A was chosen by halving the '8' in C4H8 without considering that each $\mathrm{H}_{2} \mathrm{O}$ molecule contains two H atoms. The successful answer of D usually resulted from the candidate constructing equations.
7			Total	C	
11			C		Total

